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We investigate the evolution of the temperature profile of a Friedmann-like collapsing
sphere undergoing dissipative gravitational collapse in the form of a radial heat flux.
We further consider the behavior of the star close to quasi-static equilibrium (weak heat
flux approximation) and show that relaxational effects cannot be ignored. It is explicitly
shown that extended irreversible thermodynamics predict a higher temperature at all
interior points of the stellar configuration compared to the Eckart theory. These results
carry over to the weak heat flux approximation with the magnitude of the temperature
being lower than the full radiating model. The stability of the model after its departure
from equilibrium is studied by considering the behavior of the “control parameter”
throughout the stellar interior.
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1. INTRODUCTION

The problem of gravitational collapse has many interesting applications in
astrophysics where formation of compact stellar objects such as white dwarfs and
neutron stars are usually preceded by a period of radiative collapse. The simplest
scenario is the static case. However, the study of static spheres is an idealised
problem since astronomical observations indicate that most, if not all, gravitating
systems are nonstatic. Additionally, radiative processes are vital mechanisms of
energy dissipation in such systems. The surface of a collapsing star divides space-
time into two distinct regions; the interior region and the exterior region. Since
the star is radiating the exterior spacetime is no longer described by the exterior
Schwarzschild solution but is now represented by the Vaidya solution for pure
outgoing radiation. The interior matter distribution is described by a spherically
symmetric, shear-free line element for a generalised energy–momentum tensor
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with heat flow. By utilising Raychaudhuri’s equation we can show that the slowest
possible collapse is for shear-free matter distributions (Bonnoret al., 1989). The
interior spacetime has to be matched to the exterior spacetime at the boundary of
the radiating star. Hence, to obtain a complete picture of the gravitational collapse
of a star it is necessary to adequately describe the interior and exterior spacetimes
and to provide the matching conditions for them.

The junction conditions for a spherically symmetric radiating star was first
derived by Santos (1985). He was able to show, with the use of the junction condi-
tions, that the pressure on the boundary of a radiating sphere cannot vanish. This
important result has since become a crucial requirement for spherically symmet-
ric, shear-free radiative collapse. Several physically reasonable models of radiative
spherical collapse with heat flow have been proposed by utilising the junction con-
ditions derived by Santos. A common shortfall of these early investigations was the
lack of thermodynamical consideration of the stellar fluid. Little or no attempt was
made to investigate the evolution of the temperature profile during the collapse.
Also, early attempts to determine the behavior of the temperature in these mod-
els were carried out within the framework of the Eckart formalism (Grammenos,
1994). It was assumed that the fluid was close to equilibrium at all times and that re-
laxational effects were neglible. Several investigations using extended irreversible
thermodynamics showed that causal thermodynamics predict significantly differ-
ent results from its noncausal counterpart (Di Priscoet al., 1996; Govenderet al.,
1998, 1999; Herreraet al., 1997).

In this paper we consider a simple stellar model in which the fluid trajectories
within the stellar core are geodesics. This model was first presented by Kolassis
et al. (1988) who considered a Friedmann-like interior matched to the outgoing
Vaidya solution. Subsequent work by Chanet al. (1989) extended this model
to include the weak heat flux approximation where calculations showed that the
pressure gradient changes sign leading to increased instability of the collapsing
star. In the present investigation we look at the evolution of the temperature in the
weak heat flux approximation. Furthermore, we provide new solutions in which
the collision time is not constant during the collapse process. Utilising graphical
plots we highlight differences in the temperature profile in the full Friedmann-like
model and the weak heat flux approximation. We further analyze the behavior
of the model by considering the evolution of a “control parameter” dictated by
causality requirements.

2. RADIATING COLLAPSE MODEL

For the Friedmann-like radiating model the interior matter distribution is
described by the spherically symmetric, shear-free metric

ds2 = −dt2+ A(t, r )2[dr2+ r 2(dθ2+ sin2 θ dφ2)], (1)
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A = M

2b

[
1− b2λ(t)

1− r 2λ(t)

]
u(t)2, (2)

whereu = (6t/M)1/3, λ = a expu, anda, b, andM are constants. The fluid four-
velocity isuα = δα0 and the fluid volume collapse rate is determined from

2 = 3
Ȧ

A
. (3)

We note that the four-acceleration and shear are simultaneously vanishing.
The heat flux (which is the total energy flux, since there is no particle flux

relative touα) has the form

qα = q(t, r )nα,

wherenα is a unit radial vector, so thatq is a covariant scalar measure of the heat
flux (q2 = qαqα). The other dynamical covariant scalars are the energy densityρ

and isotropic pressurep. Following Grammenos (1994) the Einstein field equations
yield (using units withc = 1= 8πG)

ρ = 12

M2u4

{[
2

u
− (b2− r 2)λ

(1− b2λ)(1− r 2λ)

]2

− 4b2λ

(1− b2λ)2

}
, (4)

p = 4

M2u4

(b2− r 2)λ

(1− b2λ)(1− r 2λ)

[
8

u
+ 5

1− r 2λ
− 1

1− b2λ
− 2

]
+ 16

M2u4

b2λ

(1− b2λ)2
, (5)

q = 16brλ

M2u4(1− b2λ)(1− r 2λ)
. (6)

Since the star is radiating energy, the exterior spacetime is described by the Vaidya
metric given by

ds2 = −
[
1− 2m(v)

R

]
dv2− 2dv d R+ R2(dθ2+ sin2 θ dφ2), (7)

wherem represents the Newtonian mass of the gravitating body as measured by an
observer at infinity. The smooth matching of the interior metric (1) to the Vaidya
metric (7) fixes the temporal evolution of our model.

The physical properties of this model have been studied extensively in the
past (Bonnoret al., 1989) and the model has been shown to be reasonably well-
behaved. The collapse starts atu = −∞ with an infinite radius and zero density,
and evolves tou = uH, the time of formation of the horizon. As pointed out in
Govenderet al. (1998) the hydrodynamical behavior of the stellar interior is the
same as in the corresponding noncausal model.
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3. CAUSAL HEAT TRANSPORT

In this section we consider the temperature profile of our model by adopt-
ing the relativistic thermodynamics of Israel and Stewart (1979). As we pointed
out earlier, the Eckart theory leads to a parabolic diffusion equation that predicts
infinite propagation velocities for the the dissipative fluxes. Furthermore, all the
equilibrium states are unstable. The causal heat transport equation with no vis-
cous/heat and vorticity/heat couplings is given by

τhαβ q̇β + qα = −κ(hαβ∇βT + Tu̇α), (8)

wherehαβ = gαβ + uαuβ projects into the comoving rest space,gαβ is the metric,
T is the local equilibrium temperature,κ(≥0) is the thermal conductivity, and
τ (≥0) is the relaxational time. The relaxation time can be considered as the time
taken by the corresponding dissipative flux to attain a steady value (Anileet al.,
1998).

The Maxwell–Fourier law is regained by settingτ = 0 in (8). The origin
of the noncausal nature of the Maxwell–Fourier law arises from the fact that the
appearance of a temperature gradient results in an instantaneous heat flux.

In order to solve the causal heat transport equation (8), we follow the ar-
guments set out in (Govenderet al., 1998) in which it is assumed that neutrinos
generated in the stellar core are responsible for heat dissipation to the exterior. The
thermal conductivity has the form

κ = γT3τc, (9)

whereγ (≥0) is a constant andτc is the mean collision time between massless and
massive particles. Assuming that

τ =
(
βγ

α

)
τc = βT−σ , (10)

whereα (≥0),β (≥0), andσ (≥0) are constants, and taking the metric (1) into
account, (8) becomes

αT3−σ dT

ds
+ β

(
ḟ + 1

2
s

)
T−σ + 1= 0, (11)

where

s = 4

Mu2(1− r 2λ)
,

f (t) = − ln[u2(1− b2λ)].

The function of integration that arises in the solution of (11) is fixed by the effective
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surface temperature of a star given by (Di Priscoet al., 1996)

(T4)6 =
(

L

4πδr 2A2

)
6

, (12)

whereδ (> 0) is a constant and the total luminosity at∞, L, is

L = −dm

dv
= 2b2λ

(1− b2λ)2

[
2

u
+ (1+ b2λ)

(1− b2λ)

]2

. (13)

The noncausal temperatureT̃ is obtained by settingβ = 0 in (11) and inte-
grating (Govinder and Govender, 2001):

σ 6= 4: T4−σ = 4λ(4− σ )(b2− r 2)

αMu2(1− r 2λ)(1− b2λ)

+
{

2b2λ

πδM2u4(1− b2λ)2

[
2

u
+
(

1+ b2λ

1− b2λ

)]2
}1−σ/4

, (14)

σ = 4: T4 = exp

[
16λ(b2− r 2)

αMu2(1− r 2λ)(1− b2λ)

]

×
{

2b2λ

πδM2u4(1− b2λ)2

[
2

u
+
(

1+ b2λ

1− b2λ

)]2
}
. (15)

We can find three causal solutions for (8) (Govinder and Govender, 2001). When
σ = 0 (i.e., for constant mean collision time) we have

T4 = 16λ(b2− r 2)

αMu2(1− r 2λ)(1− b2λ)

{
β[2− (b2+ r 2)λ]

Mu2(1− b2λ)(1− r 2λ)

+ β ḟ + 1

}
+ 2b2λ

πδM2u4(1− b2λ)2

[
2

u
+
(

1+ b2λ

1− b2λ

)]2

, (16)

and forσ = 4 we have

T4 = exp

[
16λ(b2− r 2)

αMu2(1− r 2λ)(1− b2λ)

]

×
{

2b2λ

πδM2u4(1− b2λ)2

[
2

u
+
(

1+ b2λ

1− b2λ

)]2
}

+ β
8

{
α − 8 ḟ − 16

Mu2(1− r 2λ)
−
[
α − 8 ḟ − 16

Mu2(1− b2λ)

]
× exp

[
16λ(b2− r 2)

αMu2(1− r 2λ)(1− b2λ)

]}
. (17)
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For σ = 2 one must consider three cases depending on the relationship between
α andβ. However, the solutions there are not amenable to further manipulation
(Govinder and Govender, 2001).

4. WEAK HEAT FLUX APPROXIMATION

4.1. The Field Equations

In this section we consider the case where the heat fluxq is small, which
could be the case when the fluid is close to equilibrium. This approximation is
equivalent to assuming

0 < a ¿ 1, (18)

wherea appears inλ = a expu. The Einstein field equations (4)–(6) reduce to
(Chanet al., 1989)

ρ ≈ 48

M2u6
{1− λ[(b2− r 2)u+ b2u2]}, (19)

p ≈ 8λ

M2u4

[(
4

u
+ 1

)
(b2− r 2)+ 2b2

]
, (20)

q ≈ 16brλ

M2u4
. (21)

The star starts collapsing atu = −∞ until the time of formation of the horizon, at
uH ≈ −2+ 4b2λH (Chanet al., 1989). It can be shown that the pressure remains
positive throughout the stellar interior until the time of formation of horizon. The
gradient of the pressure can be obtained from (20):

p′ ≈ − 16λ

M2u4

(
4

u
+ 1

)
r,

and can change sign during the collapse process. The calculation of the effective
adiabatic index shows that the central regions are more dynamically unstable than
the surface layers. For our weak heat flux model the causal heat transport equation
(8) reduces to

αT3−σ dT

ds
+ β( ḟ + 1

2
s)T−σ + 1= 0, (22)

where

s = 4λr 2

Mu2
,

f (t) = −2 lnu.
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The function of integration that arises in the solution of (22) is fixed by the effective
surface temperature of a star given by (12) where the total luminosity at∞, L, is
now given by

L ≈ 2b2λ

[
1+ 2

u

]2

. (23)

4.2. Exact Solutions of the Temperature Equation

In the noncausal case (β = 0) we find the general solution of (22) to be

σ 6= 4: T4−σ = 4(4− σ )λ

αMu2
(b2− r 2)+

[
2b2λ

πδM2u4

(
1+ 2

u

)2
](4−σ )/4

, (24)

σ = 4: T4 = exp

[
16λ

αMu2
(b2− r 2)

][
2b2λ

πδM2u4

(
1+ 2

u

)2
]
. (25)

For nonzeroβ (i.e., the causal case) it is difficult to find the general analytic
solution. In the case of constant mean collision time (σ = 0) we obtain

T4 = 4β

α

[
4 ḟ (b2− r 2)λ

Mu2
+ 4(b4− r 4)λ2

M2u4

]

+ 16(b2− r 2)λ

αMu2
+ 2b2λ

πδM2u4

(
1+ 2

u

)2

, (26)

while the only meaningful variable mean collision time solution we have been able
to find is in the case ofσ = 4:

T4 = exp

[
16λ(b2− r 2)

αMu2

][
2b2λ

πδM2u4

(
1+ 2

u

)2

+ β ḟ

−2β

(
α

16
− λb2

Mu2

)]
− β ḟ + 2β

(
α

16
− λr 2

Mu2

)
. (27)

(As before, we note that a solution does exist forσ = 2 but that solution does not
lend itself to a simple analysis of the temperature profile.)

It is clear from Figs. 1–4 that the casual temperature is everywhere greater than
the noncausal temperature, the difference being much greater in the full radiative
case. This is to be expected since the energy output in the full radiative case is much
greater than the weak heat flux limit. One could understand this as the collapse
proceeding sufficiently far enough so as to produce vast amounts of neutrinos that
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Fig. 1. Plots of the causal (solid) and noncausal (dotted) temperature
(T) profiles in the full radiative case for constant mean collison time
against radius (r ) with time constant (u = −1,β = δ = b = 1,α =
M = 10,λ = 0.5).

are responsible for heat generation within the stellar in the full case. The relative
radial gradient of the causal temperature is everywhere greater than the noncausal
temperature gradient with the difference being more marked at the surface of the
star.

Fig. 2. Plots of the causal (solid) and noncausal (dotted) temperature
(T) profiles in the full radiative case for variable mean collison time
(σ = 4) against radius (r ) with time constant (u = −1,β = δ = b =
1,α = M = 10,λ = 0.5).
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Fig. 3. Plots of the causal (solid) and noncausal (dotted) temperature
(T) profiles in the weak heat flux limit for constant mean collison time
against radius (r ) with time constant (u = −1,α = δ = b = 1,β =
M = 10,λ = 0.009895).

4.3. Stability Requirements

The evolution of a radiating relativistic star close to quasi-static equilib-
rium has recently received widespread attention (Herreraet al., 1997; Herrera and
Martinez, 1997, 1998). It has been shown that the subsequent evolution of the star
after its departure from equilibrium is sensitive to a certain “control parameter,”

Fig. 4. Plots of the causal (solid) and noncausal (dotted) temperature
(T) profiles in the weak heat flux limit for variable mean collison
(σ = 4) against radius (r ) with time constant (u = −1,α = δ = b =
1,β = M = 10,λ = 0.009895).
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which, in the absence of bulk viscosity and shear viscosity, is given by

α1 = 1

(ρ + p)

(
κT

τ

)
,

whereτ is the relaxation time. More recently it has been reinforced that the con-
trol parameterα1 measures the instability of the system (Herreraet al., 2000). The
conditionα1 = 1 is called the critical point and implies vanishing of the effective
inertial mass density of a fluid element. The effective inertial mass density de-
creases asα1 increases from zero, thus signifying the onset of instability. It has
been further shown that causality requirements demand thatα1 < 1. For our model
the above parameter reduces to

α1 = αM2u6T4

8β[6− 2λu(b2− r 2)− λu2(3b2+ r 2)]
.

Plots of the effective adiabatic index of our model show that central regions of the
stellar configuration are more dynamically unstable than the outer regions (Chan
et al., 1989). From Figs. 5 and 6 we note thatα1 is maxiumum at the center
and diminishes outwards towards the boundary in keeping with the numerical
results found in Chanet al. (1989). Furthermore, we should point out thatα1 for
the variable collision time is lower than that for the constant collision time, thus
signifying greater stability for a physically motivated choice of the collision time.
The choice of a constant collision time may only be valid for a very short period
and cannot be used throughout the collapse. Also, note thatα1 < 1 throughout the
stellar interior thus implying that the critical point is never reached provided that
the fluid is always close to equilibrium.

Fig. 5. Plot of the “control parameter” against radiusr (causal
temperature profile with constant mean collison time) with time con-
stant (u = −1,α = δ = b = 1,β = M = 10,λ = 0.009895).
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Fig. 6. Plot of the “control parameter” against radiusr (causal tem-
perature profile with variable mean collison time (σ = 4)) with time
constant (u = −1,α = δ = b = 1,β = M = 10,λ = 0.009895).

5. CONCLUSION

We have fully analysed the evolution of the temperature profile within the
framework of extended irreversible thermodynamics in a simple stellar model
undergoing dissipative gravitational collapse. We have further considered the weak
heat flux approximation where it is assumed that the star is always close to quasi-
static equilibrium. The causal heat transport equation is solved for variable collision
times and the solutions reported here for the weak heat flux approximation are new.
The temperature profiles strongly indicate that relaxational effects, especially when
the fluid is far from equilibrium, cannot be ignored. An analysis of the stability
of the model confirms earlier findings that the control parameterα1 is a measure
of the stability of a system, at least before the critical point is reached. It would
be interesting to investigate the effect of shear and heat flow during dissipative
gravitational collapse and to ascertain the predicting power of the control parameter
on the stability of the star.
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